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Table 4. U - O  bond lengths as function of bond strengths 

Uranyl bond Six secondary bonds Four secondary bonds 
t, _ ^ 

8 Bond length -- s Bond length s Bond length" 

2.00 1.70 A 0-33 2.49 /~. 0.50 2.38 A 
1.75 1.74 0.42 2.43 0.63 2.30 
1.50 1.83 0.50 2.38 0.75 2.23 
1.25 1.95 0.58 2.33 0.88 2.15 
1.00 2.08 0.67 2-28 - -  - -  

is near ly  normal  (86 °) to the  associated uranyl  axis. 
The distances and bond angles within the  group agree 
well with those observed in other  acetates.  

The crude experimental  determinat ion of the hy- 
drogen coordinates places the H m  a tom in the same 
plane as the carbon and oxygen atoms, and this 
feature  was re ta ined in modifying the  exper imental  
coordinates for the  hydrogen atoms so as to give more 
reasonable C - H  distances and bond angles. H - 0  dis- 
tances outside a given aceta te  group are all greater  
t h a n  2-7 /~, showing tha t  there is no real bonding. 

The 0m--0~v distances are 2.21+0.05 /~ within and 
2-76±0-05/~ between aceta te  groups. These are alter- 
na t ing  edges of the near ly  plane hexagon of oxygen 
atoms about  the uran ium a tom shown in :Fig. 2. 

The :Fourier syntheses were carried out on X-RAC,  
while all other  calculations were made  by hand.  The 
authors  are deeply grateful  to Prof. R a y m o n d  Pepin- 
sky for the  generous and hospitable manner  in which 
he made  X-RAC available to us, and to the X-RAC 
personnel for their  valuable help. 
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Experience is summarized in the use of fractional shifts of scale, temperature and distance para- 
meters, values of r = 2:w(IFo]2--JFcl2)2/2:wl•or 4, the behavior of temperature factors and a three- 
dimensional Patterson superposition program in the determination of a number of structures. 

The increasing availabil i ty of high-speed digital com- 
puters  in crysta l lography makes  it  desirable t ha t  
general accounts of procedures and experience be 
available. Certain changes and developments in known 
methods,  especially greater  emphasis on three-dimen- 
sional methods,  as well as the  development of new 
methods,  are taking place in a number  of different 
laboratories.  The var ie ty  of computers  now available 
renders an account of programs for some par t icular  
computer  of only special interest,  but  we feel t ha t  a 

more general s t a tement  of computer  experience and 
techniques is of interest  to crystallographers.  

The Remington Rand  1103 UNIVAC S C I E N T I F I C  
high-speed digital computer,  in use for crystallographic 
computat ions  in this labora tory  for over three years,  
has a larger memory  than  computers for which similar 
computat ions  have been described (Bennet & Ken- 
drew, 1952; Ahmed & Cruickshank, 1953; Mayer  & 
Trueblood, 1953; Thompson, Caminer, Fant l ,  Wr igh t  
& King, 1954; Cochran & Douglas, 1955; Friedlander,  
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Love & Sayre, 1955; Fowweather, 1955; Sparks, 
Prosen, :Kruse & Trueblood, 1956) and is comparable 
in this respect with the IBM 704 for which some 
programs have been written (Vand, Turley & Pepin- 
sky, 1957). We describe here some possibilities* in 
techniques and methods made possible by this large 
memory, with emphasis on the solutions of types of 
problems, rather than on the computer language and 
details. 

1. R e m a r k s  on l eas t - squares  procedures  

Since the introduction of the least-squares method 
into crystallography (Hughes, 1941)and the statistical 
treatment of errors (Hughes & Lipscomb, 1946; 
Cruickshank, 1949) these procedures have been widely 
used. They are particularly suitable for use in high- 
speed computers on which a large number of cycles 
of refinement can readily be made with relatively little 
output. Most of our comments arise from experience 
in which five to twenty cycles of refinement have been 
carried out on each of about fifteen different structure 
determinations during the past three years. 

Our programs have been devised to minimize the 
function E = ~w(IFo[9-[Fclg)% This function has the 
advantage over the more usual D--Xw([Fol - ]Fc l )  2 
of continuous derivatives at Fc -- 0, which makes it 
unnecessary to introduce arbitrary criteria for discard- 
ing reflections of uncertain phase. Also, the square- 
root operation for deriving [Fc[ for noncentric struc- 
tures is avoided. Weighting factors w = (4 Fmin./Fo) 4, 
when 4 Fmin. ~ Fo, and w = 1 when 4 Fmin. >__ Fo 
(Lavine & Lipscomb, 1954) were used in most of our 
studies except as described below. 

The aim of the least-squares refinement is to mini- 
mize E with respect to the scale factor k and the para- 
meters that  define the crystal structure. These para- 
meters are the positional coordinates of all the atoms 
in the asymmetric unit and their thermal parameters. 
For the latter, two alternatives are normally available. 
An atom may be treated as isotropic, with tempera- 
ture factor exp ( - B  sin 2 0/A2), in which B is a para- 
meter; or it may be refined anisotropically, with 
temperature factor 

e x p  -- (h2/~1 ~- ~2#2 -~/2~3 -~- h~#4 -~- kl~5 -~-lh#6), 

all six fl's being adjustable. In our general least- 
squares program, the choice between these alternatives 
can be made separately for each atom in the asymmetric 
unit, and this choice can be altered at will at the be- 
ginning of each new refinement cycle. 

(A) Fractional shifts 

:Nearly all of our experience with the least-squares 

* A prel iminary account of the use of the 1103 was made 
by Dickerson, Wheatley,  Howell & Lipscomb (1957), and 
further  developments were presented at the Four th  Interna-  
tional Congress of Crystallography (Lipscomb, Dickerson & 
Hirshfeld, 1957). 

method has neglected the off-diagonal terms, which 
represent interactions between parameters. Only in 
one comparatively simple example, B6H~o, have we 
studied their effect on total computing time. In this 
trial it appeared that  the improvement in rate of 
convergence did not repay the added computing time 
per refinement cycle. I t  is probable that, provided 
the chosen crystal axes are orthogonal or nearly so 
and two-dimensional refinements are restricted to well- 
resolved projections, the off-diagonal terms can be 
safely neglected. Other groups have investigated the 
inclusion of part or all off-diagonal terms more ex- 
tensively (Sparks & Trueblood, 1958). We feel that  
for a simple structure the total computing time can 
be reduced by the inclusion of off-diagonal terms but 
the total time is generally so small that  it usually 
does not matter greatly. For a complex structure we 
feel that  refinement will normally proceed more 
rapidly with the use of diagonal terms only. The 
demarkation between simple and complex structures 
depends upon the computer memory and seems to be 
of the order of 27 position parameters in our computer. 
When diagonal terms only are used it is necessary to 
introduce damping factors (nk, n0, nz, respectively) to 
the changes in the scale, temperature, and distance 
parameters, at the end of each cycle of refinement 
(Dickerson, Wheatley, Howell & Lipscomb, 1957; 
Cromer, 1957). When an essentially correct trial struc- 
ture is being refined, it is often wise to choose no < n~ 
until the position parameters are well refined and then 
to increase both no and n~. Typical values are no = s ~ 
and nx = ¼ for the early stages of refinement and 
no = ½, nx = ½ for the final stages of refinement. We 
presently choose n~ = n~, usually, to increase the rate 
of refinement of the scale factor. Usually a larger n0 
is permissible when anisotropic temperature factors 
are introduced. At the end of each cycle the parameter 
shifts should be carefully compared with shifts from 
the previous cycles. The value of n should be decreased 
if a number of shifts of appreciable magnitude oscillate 
in sign, and n should be increased if there are very 
few sign changes and convergence seems to be slow. 
Provision for separate n's for atoms of high atomic 
number or atoms with particularly anisotropic thermal 
motions is undoubtedly desirable. Often one may 
observe a few parameter shifts which are far greater 
than the average shifts and are not oscillating. If so, 
refinement has often been considerably hastened by 
the introduction of a few of the largest full shifts 
manually, provided that  these large shifts do not 
produce oscillations of the signs of these shifts. The 
reverse procedure, setting no > nx, is also useful, 
particularly at the trial structure stage. This procedure 
focuses attention on the thermal parameters, which 
often increase abnormally rapidly for incorrectly 
placed atoms in the trial structure, as described below. 

(B) Behavior of temperature factors 

The values of B in the isotropic temperature factor 

A C 12 36 
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Table  1. Successive values of temperature parameters B and discrepancy factors R and r during the refinement 
of an incorrect model of B6H10 

The positional parameters, which were refined at the same time, are not shown. The last column gives final values for the correct 
model, in which a single H atom in a general position replaces the two atoms I-I s and tI~, which were placed on a mirror plane. 

Standard deviations of these B values are at least comparable with the absolute magnitudes of the negative values 

True 
Cycle 1 2 3 4 5 6 7 8 9 10 11 12 structure 

B t 2.5 2.9 2.8 2.7 2.5 2.4 2.3 2.2 2.0 1.9 1.9 1.9 1"8 
B~ 2-5 3-0 3.1 3.1 3.1 3.2 3-2 3.2 3.3 3-3 3.3 3.3 3.3 
B a 2.5 3"0 3.2 3"2 3.2 3"3 3"3 3"3 3"3 3"3 3"3 3"4 3"3 
B 4 2.5 3.2 3"3 3.3 3"3 3.2 3"2 3.1 3.0 3.0 2.9 2-9 2-7 
IT 1 1.4 2.8 3.0 2.5 1.2 1.1 0-5 0.1 --0.8 --1.2 --1-3 --1.2 --0.9 
H~ 1.4 0.7 0.2 --0.1 --0.3 --0.4 --0.5 --0.5 --0.4 --0.2 0.1 0.1 0-5 
H a 1.4 2.0 1.5 1.2 1.0 0.9 0.9 1.0 1.3 1.7 1.8 1.9 2.2 
H 4 1.4 2.6 2.8 2.8 2.7 2.5 2.3 2.1 1.7 1.1 1.2 1.2 - -0 .5  
:H 6 1.4 0.8 0.2 --0.2 --0.5 --0.8 --1.0 --1.2 --1.5 --1.6 --1-5 --1.6 --1.2 
H s 1.4 5.5 9.8 14.7 19.6 25.5 30.0 32.9 37.8 40.7 29.4 35.4 
l:I~ 1.4 4.0 6.0 8-1 10.3 13.4 17.0 21.5 37.4 69.9 73.9 97.5 5.3 

100R 19.0 13.2 13.2 12.9 12.7 12.4 12.2 12.0 11.6 11-3 11.4 11.3 9-9 
100r 24.9 9.0 7.7 7.1 6.7 6.4 6.1 5.8 5-4 5-0 5-0 4-9 2-7 

Damping,factor ne --- nx =nb 0.31 0"31 0-31 0.31 0.39 0,39 0.39 1.00 1.00 1-00 0.50 

exp ( - B  sin 2 0/;t ~) show v e r y  s t r ik ing  behav io r  upon  
r epea ted  app l ica t ion  of leas t -squares  re f inement .  If,  
in  an  otherwise  correct  s t ruc ture ,  some of the  l ight  
a toms  are incor rec t ly  p laced  (perhaps i n a d v e r t e n t l y ! )  
t he  values  of B for the  incor rec t ly  p laced a toms  rise 
to  ve ry  large values.  Thus  the  procedure  effect ively  
e l iminates  these  a toms  f rom the  t r ia l  s t ruc ture .  This  
procedure  is pa r t i cu l a r ly  useful  if the  d a t a  are suffi- 
c ien t ly  incomple te  t h a t  the  corresponding e lec t ron 
dens i ty  maps  or difference maps  have  false peaks  
ar is ing f rom convergence difficulties.  The  resul ts  for 
Bell10, in  which  H 5 and  H 7 h a d  been  incor rec t ly  placed,  
are v e r y  s t r ik ing  (Table 1). The  values  of B af te r  a 
n u m b e r  of cycles of r e f inemen t  of the  correct  s t ruc tu re  
are  a t  leas t  somewha t  reasonable ,  as ind ica ted  in the  
las t  co lumn of Table  1. 

A n o t h e r  equa l ly  useful b u t  less s t r ik ing  use of the  
t e m p e r a t u r e  fac tor  is the  iden t i f i ca t ion  of C, N and  0 
a toms  in a t r ia l  s t ruc tu re  where  the  chemical  ambi-  
guit ies do no t  al low a d is t inc t ion.  I n  ~0-conhydrine 
HBr ,  one of the  a toms  of a s ix -membered  r ing  is N, 
while  all  o thers  are C. Af ter  several  cycles of three-  
d imens iona l  leas t -squares  re f inement ,  in which  all six 
a toms  were assigned the  same a tomic  sca t te r ing  factor ,  
t he  values  of B became 4.1-4.7 for the  five C a toms,  
b u t  on ly  2.1 for the  N a tom.  I n  th is  example ,  the  re- 
f i nemen t  thus  t ended  to  place more  electrons in the  
region of the  peak  of the  N a tom.  

The  behav io r  of t e m p e r a t u r e  factors  also suggests 
which  a toms  requi re  large coord ina te  shifts. I f  an  a t o m  
is, say,  abou t  0.5 ~ away  f rom its t rue  posi t ion,  i ts  
B va lue  will become anoma lous ly  large in the  region 
of 5-10/~2,  and  the  error  in  B decreases a p p r o x i m a t e l y  
p ropo r t i ona l l y  to  the  error  in  the  a tomic  pos i t ion  as 
the  r e f inemen t  proceeds.  R e f i n e m e n t  can t h e n  be 
acce lera ted  if special  a t t e n t i o n  is g iven  to  large shif ts  
for these  pa r t i cu la r  a toms  in the  ear ly  stages. 

For  the  sake of completeness  we m a y  suggest  t h a t  
values  of B will be qui te  useful  in  iden t i f i ca t ion  of 

a toms  d i s t r i bu t ed  a t  r a n d o m  over  a n u m b e r  of sites 
g rea te r  t h a n  the  n u m b e r  of a toms.  However ,  our  
present  exper ience  does no t  include examples  of th is  
k ind.  

The  behav io r  of t e m p e r a t u r e  fac tors  could conceiv- 
ab ly  m a k e  the  leas t -squares  p rocedure  qui te  useful a t  
earl ier  t r ia l  s t ruc tu re  stages bu t  a more  ex t ended  
s t u d y  appears  to  be required,  especial ly  in the  choice 
of su i table  weights ,  n u m b e r  of ref lect ions used, and  
perhaps  the  inclusion of cross-terms. I n  one ex tens ive  
series of t r ia ls  in  the  BsC1 s s t ruc tu re  de t e rmina t ion ,  
t he  behav io r  of B values  was no t  as helpful  as we h a d  
hoped :  we found  a fair  n u m b e r  of n e a r - h o m o m e t r i c  
s t ruc tures  which  fai led to give clear ind ica t ions  of the  
incor rec t ly  p laced  C1 a toms.  Un t i l  f u r the r  t r ia ls  are 
made  on as -ye t -unso lved  s t ructures ,  one mus t  have  
some reserva t ions  concerning the  power  of the  m e t h o d  
in this  l imi ted  form a t  t he  ear ly  t r ia l  s t ruc tu re  stage. 

Of even  grea te r  va lue  would be a procedure ,  now 
being s tudied  here,  of i n t roduc ing  a few small ,  b road  
e lec t ron-dens i ty  m a x i m a  wi th  sca t te r ing  ampl i tudes ,  

a f e x p  {2~i(hz+ky+lz)}  x e x p  - B  (sin ~ 0/~ 2) 

where  ~ and  B are pa rame te r s  in  the  leas t -squares  
procedure ,  in to  a region where  an  a t o m  is expected .  
We  hope  to  f ind  condi t ions  unde r  which  the  correct  
a toms  will t h e n  ref ine t oward  reasonable  values  of 

and  B while  the  other ,  incor rec t ly  placed,  t r i a l  
a toms  will essent ia l ly  van i sh  f rom the  s t ruc tu re  a f t e r  
a few cycles. This  m e t h o d  should  also prove  qui te  
va luab le  in the  iden t i f i ca t ion  of a toms  t h a t  have  
s l ight ly  differ ing a tomic  numbers ,  as in  the  ~0- 
conhydr ine  H B r  ease m e n t i o n e d  earlier.  

(C) Convergence 

Convergence  is fol lowed b y  no t ing  the  values  and  
signs of the  shifts, t he  va lue  of E --Zw(IFol2-1F21)2 
which  is being minimized,  the  va lue  of r = E/•w[FoJ 4, 
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Table 2. Values of R and r for various structures 
Number of Number of 

Structure Space group R r parameters reflections 

Iresin diester (1) _P_21 0.16 0.16 159 1430 
I~oussin black salt (2) P1 0-14 0.08 89 1395 
BC13 (3) C63/m 0- i 1 0.06 5 109 
B~F a (4) P21/n 0.11 0.06 12 131 
B6H10 (5) Cmc21 0.10 0.03 52 234 
B~H15 (6) P21/n 0.16 0.13 37 374 
BAH10 (7) P21/n 0.09 0.04 45 616 
BsH1, (7) P21[n 0. I i  0.05 51 298 
BsC1 s (8) _P212~21 0.17 0-14 105 1175 
~p-Conhydrine HBr (9) _P212121 0.11 0-06 160 920 
Ag cyclooctatetraene NO a (10)  P21/a 0.11 0.06 58 1136 

(1) l~ossmarm & Lipscomb, 1959. (6) Dickerson, Wheatley, Howell & Lipscomb, 1957. 
(2) Johansson & Lipscomb, 1957. (7) Moore, Dickerson & Lipscomb, 1957. 
(3) Spencer & Lipscomb, 1958. (8) Jacobson & Lipscomb, 1959. 
(4) Trefonas & Lipscomb, 1958. (9) Yanai & Lipscomb, 1959. 

(10) Mathews & Lipscomb, 1958. (5) Hirshfeld, Eriks, Dickerson, Lippert & Lipscomb, 1958. 

and  values of R = 211Fol-IFclll21Fcl for all reflec- 
tions and  the classes hO1, hkO, Okl, h odd, k odd, 1 odd, 
h+k odd, k+l  odd, h+l odd and h+k+l  odd. These 
la t ter  classes aid in the discovery of certain nearly- 
homometr ic  structures. I t  is most  impor tan t  not  to 
stop ref inement  when the paramete r  shifts become 
comparable  with their  s tandard  dcviat ions because a 
number  of fur ther  cycles of ref inement  usual ly  pro- 
duces a cumulat ive  shift  m a n y  t imes these s tandard  
deviations. Al though individual  cases va ry  appreci- 
ably,  the following table of values of R and r m a y  be 
of some use for comparison when structures of com- 
parable  complexi ty  are being refined (Table 2). In  
most  of these examples,  reduction of the sum of squares 
of residuals had  been carried well beyond the l imits  
imposed by  such errors as precision of in tens i ty  
measurements ,  accuracy of f i lm factors, errors of 
correlation, neglect of ext inct ion corrections (especially 
in the BsC] s work), absorption errors, etc. 

Variat ion of weighting factor schemes in order to 
improve the rate of convergence (Vand & Pepinsky,  
1957) or in order to minimize the final s tandard  devia- 
tions (see below) are impor tan t  areas in which our 
experience is so l imited tha t  we ment ion these points 
here only for completeness. 

(D) Errors 
The inclusion of weighting factors in the expressions 

for the s tandard  deviations of bond distances is of 
great importance (Hughes & Lipscomb, 1946). Un- 
fortunately,  the Fourier  method of computing s tandard  
deviations (Hughes & Lipscomb, 1946; Cruickshank, 
1949) is not  usual ly  modified to include weights 
related in at least a general way  to s tandard  deviations 
of the  observations. We have found tha t  a least- 
squares ref inement  of AgN03 cyclooctatetraene with 
weights, as described by Lavine  & Lipscomb (1954), 
gave s tandard  deviat ions less by  a factor of two than  
the s tandard  deviations obtained from a similar refine- 
ment  of the same compound but  with the use of uni t  
weights at  every stage of the calculation, including the 

probable error computat ion.  If  the errors are t ru ly  
random, it is a well-known result  of the least-squares 
procedure tha t  the 'best '  system of weighting gives 
the lowest s tandard  deviations. This result  suggests a 
study, now under  way, in which systemat ic  weighting 
schemes are tested by var ia t ion of the weighting curve 
with such parameters  as size of reflection, angle of 
scattering and number  of t imes of observation. A 
l imited s tudy  of some of these effects was made  in the 
B6H~0 paper  (Hirshfeld, Eriks, Dickerson, Lipper t  & 
Lipscomb, 1958). 

(E) Space group problems 
Our least-squares program is applicable to all 

triclinic, monoclinic and orthorhombic space groups. 
I t  is not  necessary to write special least-squares pro- 
grams for space groups of tetragonal,  hexagonal  and 
cubic symmetry .  If  a s tructure is refined in one of the 
subgroups of triclinic, monoclinic or or thorhombic 
symmetry ,  the final s tructure will, in fact, have the 
higher s y m m e t r y  well wi thin  the s tandard  deviat ions 
(Spencer & Lipscomb, 1958). Of course, the list of 
observed reflections mus t  be expanded to the lower 
symmetry ,  and it  is the exactness of equal i ty  of related 
reflections in this expanded list tha t  causes the struc- 
ture to deviate so lit t le from its true s y m m e t r y  when 
it  is being refined in a subgroup. 

2. R e m a r k s  on F o u r i e r  m e t h o d s  

Problems relat ing to weighting factors, convergence 
and computer  output  are more easily handled  by  least- 
squares procedures t han  by  Fourier  series methods on 
digital  computers,  and hence our use of three-dimen- 
sional Fourier  series is not as extensive as is often the 
case. 

In  the tr ial  structure stage, an impor tan t  program 
is the point-by-point  three-dimensional  Pat terson 
superposition program which selects the Buerger 
m i n i m u m  funct ion at  each point  (Buerger, 1951). In 
our experience, this is the most powerful and  graphic 

36* 
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Fig .  1. S e c t i o n  a t  ~o~ 9 c of a t h r e e - d i m e n s i o n a l  F o u r i e r  s u m m a t i o n  fo r  d i b r o m o b e n z o a t e i r e s i n .  P h a s e s  a re  d e t e r m i n e d  b y  b r o m i n e s  
on ly .  C o n t o u r s  a r e  p l o t t e d  a t  i n t e r v a l s  of t h r e e  l e t t e r s ,  c o r r e s p o n d i n g  to  a d i f f e r e n c e  of 1 e . A  -a ,  e x c e p t  in t h e  v i c i n i t y  of  

3 t h e  b r o m i n e  a t o m ,  w h e r e  c o n t o u r s  a re  p l o t t e d  a t  i n t e r v a l s  of  5 e . A -  . Spec ia l  s y m b o l s  a r e  l ---- n u a n d  L ---- /, in o r d e r  t o  
r e d u c e  c o n f u s i o n  w i t h  1. 

method of obtaining trial structures. For a typical 
structure this program requires 64,000 words (one 
word is a 36-place binary number) of magnetic tape 
storage available in our model of the 1103 Computer. 
Any peak may be chosen for the superposition and 
any number of superpositions may be done. Thus a 
single interaction does not need to be found for the 
first superposition. This point-by-point program is 
much more sensitive and informative than its graphical 
equivalent. Moreover, it is much easier to depend 
upon small details in this map than in the more usual 
graphical maps obtained by superposition procedures. 
The great saving of time allows the trial of many 
different Patterson peaks as starting points for the 
superposition procedure. 

Since output problems are of major importance in 
our computer and in many other computers, we feel 
some discussion of output is of merit, even though 
suzh a discussion would not be of interest to all 
readers. 

Since the II03 Computer loses no time when a single 
character is punched, provided the interval between 
punch commands is greater than 17 milliseconds, we 
use a single character to represent the electron 
density at each point of crystal space in the Fourier 
program (el. Bennett & Kendrew, 1952). The use of 
small and large letters, numbers, and two colors in 
the typing, allows an interval of 128 in the sampling 
of the electron density before a repeat becomes neces- 
sary (Fig. 1). The color code can be chosen at any 

particular contour level so that  it is not always 
necessary to draw contours on the maps printed by the 
typewriter. The color code can also be used to distin- 
guish between positive and negative values of the 
electron density. 

A three-dimensional difference map is computed at 
least once for each structure. Although full anisotropic 
temperature factors, with six constants per atom, are 
available in the least-squares program, we generally 
do not introduce this anisotropic refinement unless this 
difference map clearly indicates that  these additional 
parameters are necessary. Frequently, therefore, these 
anisotropic temperature factors are introduced only for 
the heavy atoms. Similarly, hydrogen atoms are 
normally introduced only when some evidence for them 
is found in the difference map. Finally, it is quite usual 
that  several three-dimensional Fourier series may be 
computed at the various trial structure stages. 

3. R e m a r k s  o n  o t h e r  p r o c e d u r e s  

There is little point in describing in detail a great 
number of auxiliary programs, which start with the 
observed data, make Lorentz-polarization corrections, 
correlate them, sharpen the data and compute the 
three-dimensional Patterson function. It has become 
customary to leave these data stored on magnetic 
tape and not to take them out of the computer at any 
of these intermediate stages. Even when trial struc- 
tures are being tested and refined, the values of 
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E, r and R for various classes of reflections, and a 
running typewri te r  record of the  number  of reflections 
for which Fo differs from Fc by  a factor  of two, give 
some indication of correctness and of the  stage of 
refinement,  r a ther  t h a n  the detailed lists of Fo and Ft.  
Detai led comparison of Fo and Fc is usual ly  made  
only a t  the end of the  investigation, with special 
a t ten t ion  to possible errors of Fo's which differ by  
more t han  a factor  of two from the Fc's. Bond distance 
routines are also available, in which all in teratomic 
distances less t h a n  some prescribed max imum,  usual ly  
about  4 A, are computed.  

A conversion between anisotropic and isotropie 
t empera tu re  factors may ,  however,  be of interest.  
This conversion makes  use of the  relations fli = a*2B/4, 
f14 = a 'b*  cos ?*B/2,  and similar relations for f12, f13, 
flh, and  f16. In  order to fit  an  isotropic the rmal  para-  
meter  to an a tom t h a t  was formerly  refined anise- 
tropically,  the  computer  uses the  approximat ion  

a'2~61 +5 .2j6~ + c'9/5~ + 2 a ' b *  cos },* f14 
B + 2 b ' c *  cos a*flh+2a*c* cos fl*fl6 

4 - a*a+b*4+c*4+4a*2b .9 cos 9 ~* 
+4b*~c .9. cos 9. c¢*+4a.2c .2 cos 2 fl* 
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computat ions,  and to t h a n k  the  Office of Nava l  Re- 
search, the  Office of Ordnance Research and the  
Computing Labora to ry  of the Univers i ty  of Minnesota 
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